On the Spectrum of the Dirichlet Laplacian in a Narrow Infinite Strip

نویسندگان

  • Leonid Friedlander
  • Michael Solomyak
چکیده

This is a continuation of the paper [3]. We consider the Dirichlet Laplacian in a family of unbounded domains {x ∈ R, 0 < y < h(x)}. The main assumption is that x = 0 is the only point of global maximum of the positive, continuous function h(x). We show that the number of eigenvalues lying below the essential spectrum indefinitely grows as → 0, and find the two-term asymptotics in → 0 of each eigenvalue and the one-term asymptotics of the corresponding eigenfunction. The asymptotic formulae obtained involve the eigenvalues and eigenfunctions of an auxiliary ODE on R that depends only on the behavior of h(x) as x → 0. The proof is based on a detailed study of the resolvent of the operator ∆ .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE SPECTRUM OF THE DIRICHLET LAPLACIAN IN A NARROW STRIP, by Leonid Friedlander and Michael Solomyak

There are several reasons why the study of the spectrum of the Laplacian in a narrow neighborhood of an embedded graph is interesting. The graph can be embedded into a Euclidean space or it can be embedded into a manifold. In his pioneering work [3], Colin de Verdière used Riemannian metrics concentrated in a small neighborhood of a graph to prove that for every manifold M of dimension greater ...

متن کامل

Waveguides with combined Dirichlet and Robin boundary conditions

We consider the Laplacian in a curved two-dimensional strip of constant width squeezed between two curves, subject to Dirichlet boundary conditions on one of the curves and variable Robin boundary conditions on the other. We prove that, for certain types of Robin boundary conditions, the spectral threshold of the Laplacian is estimated from below by the lowest eigenvalue of the Laplacian in a D...

متن کامل

On the Spectrum of the Dirichlet Laplacian in a Narrow Strip, Ii

This is a continuation of the paper [3]. We consider the Dirichlet Laplacian in a family of unbounded domains {x ∈ R, 0 < y < h(x)}. The main assumption is that x = 0 is the only point of global maximum of the positive, continuous function h(x). We show that the number of eigenvalues lying below the essential spectrum indefinitely grows as → 0, and find the twoterm asymptotics in → 0 of each ei...

متن کامل

On the Spectrum of the Dirichlet Laplacian in a Narrow Strip, Ii Leonid Friedlander and Michael Solomyak

This is a continuation of the paper [3]. We consider the Dirichlet Laplacian in a family of unbounded domains {x ∈ R, 0 < y < ǫh(x)}. The main assumption is that x = 0 is the only point of global maximum of the positive, continuous function h(x). We show that the number of eigenvalues lying below the essential spectrum indefinitely grows as ǫ → 0, and find the twoterm asymptotics in ǫ → 0 of ea...

متن کامل

On the Spectrum of the Dirichlet Laplacian in a Narrow Strip

We consider the Dirichlet Laplacian ∆ in a family of bounded domains {−a < x < b, 0 < y < h(x)}. The main assumption is that x = 0 is the only point of global maximum of the positive, continuous function h(x). We find the two-term asymptotics in → 0 of the eigenvalues and the one-term asymptotics of the corresponding eigenfunctions. The asymptotic formulae obtained involve the eigenvalues and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008